Поиск по сайту


Предыдущий материал К содержанию номераСледующий материал

ЕДИНЫЙ ДВИГАТЕЛЬ ДЛЯ ПОДВОДНОЙ ЛОДКИ

Александр Маринин

Классическая дизель-электрическая главная энергетическая установка подводной лодки (ДЭГЭУ) - фактически мера вынужденная, да такие подлодки на самом деле и не подводные вовсе, а скорее ныряющие. Все они, как киты или дельфины, вынуждены с определенной периодичностью подниматься на поверхность, чтобы запастись кислородом и заодно зарядить аккумуляторы. Идеальным для подводной лодки является единый двигатель для надводного и подводного хода. Ведь у лодки с ДЭГЭУ в подводном положении дизель фактически становится балластом (если только лодка не использует так называемый режим работы дизеля под водой (РДП), когда, двигаясь на перископной глубине, она забирает атмосферный воздух с помощью специальной трубы с клапаном от заливания - немцы назвали это устройство шнорхелем). В надводном положении обычной лодке (если на ней не реализован режим электродвижения) становятся "ненужными" электромоторы и уж, во всяком случае, аккумуляторные батареи. Таким образом, как большинство двухсредных или двухрежимных аппаратов, подводная лодка постоянно "возит" в себе довольно массивное, объемное и дорогостоящее оборудование, которое используется только часть времени.

В поисках единого двигателя были опробованы самые разнообразные устройства. Первым из них был… человек, который потреблял сравнительно мало воздуха, но в качестве двигателя оказался слишком маломощен. Идея чисто электрической подводной лодки также зашла в тупик, поскольку даже с использованием самых совершенных аккумуляторов лодка способна проплыть не более нескольких сот миль. Постепенно конструкторы подлодок пришли к выводу, что единый двигатель следует создавать на базе мотора не подводного хода, а наоборот - надводного. Для двигателей внутреннего сгорания наметились два пути: один впоследствии привел к РДП, а другой был связан с разработкой автономной силовой установки, не нуждающейся в атмосферном воздухе.

Первыми, кто попытался заставить двигатель внутреннего сгорания работать под водой, стали французские инженеры Бертен и Петитхомм. Результаты испытаний разочаровали.

Гораздо более удачную попытку создать подводную лодку с единым двигателем предпринял наш соотечественник инженер С.К. Джевецкий. По его замыслу в качестве единого предполагались два четырехтактных бензиновых двигателя фирмы "Панар-Левассор" мощностью по 130 л.с. каждый, работающих с помощью зубчатых передач на один гребной вал с четырехлопастным винтом. В надводном положении бензиномоторы работали по обычной схеме. В подводном положении для обеспечения их работы в машинное отделение подавался воздух, хранившийся в 45 воздухохранителях при давлении 200 атмосфер. Общий запас составлял около 11 м3, чего должно было хватить на 4 часа работы бензиномоторов. Давление воздуха с 200 атмосфер до 18 снижалось в редукционном клапане (детандере). Выхлопные газы откачивались через надстройку, служившую своеобразным глушителем, в отводную трубу, расположенную под килем и имевшую большое количество мелких отверстий. Выходя мелкими струйками из многочисленных отверстий отводной трубы, выхлопные газы должны были растворяться в воде.

Строительство подводной лодки, получившей наименование "Почтовый", началось в 1906 г. 30 сентября 1908 г. она вошла в состав флота. Несмотря на то, что эксплуатация "Почтового" подтвердила возможность подводного плавания с двигателями внутреннего сгорания, работающими в подводном положении, подводная лодка этого типа так и осталась единственной. Не удалось достичь бесследности движения лодки под водой - на поверхности были заметны пузырьки отработанных газов. Мощность газового насоса оказалась недостаточной для откачки выхлопных газов от обоих бензиномоторов, поэтому в подводном положении работал только один. Сложность и низкая конструктивная надежность механизмов требовали исключительно высокой квалификации личного состава, обслуживавшего лодку. Большие нарекания вызывала большая шумность бензиномоторов; кроме того, на зарядку воздухохранителей уходило от 2 до 3 дней.

Первая мировая война прервала работы по созданию единых двигателей для подводных лодок, но уже с 1920-х годов в Советском Союзе и Германии вновь начались исследования в этой области. При этом от идеи просто разместить на подводной лодке большой запас воздуха сразу отказались. Решили хранить только кислород, причем в жидком состоянии, когда он занимает примерно в пять раз меньший объем, чем в баллонах под давлением 150 кгс/см2. Да и сосуд для хранения жидкого кислорода намного легче, чем стальные толстостенные баллоны равной емкости. Однако жидкий кислород непрерывно испаряется, а способы, замедляющие этот процесс, в тот период времени не были разработаны.

В отечественном флоте в 1930-е годы изучались две схемы обеспечения работы дизелей под водой или, как их стали называть, схемы работы дизеля по замкнутому циклу: "РЕДО" С.А. Базилевского и "ЕД-ХПИ" В.С. Дмитриевского.

Первой в 1937 г. начали переоборудование подводной лодки XII серии под опытную энергетическую установку "РЕДО" (регенеративный единый двигатель особого назначения). Эта подлодка получила наименование С-92 и бортовой номер Р-1. Принцип работы установки "РЕДО" состоял в следующем: в подводном положении выхлопные газы дизеля очищались от механических примесей и влаги, охлаждались и направлялись обратно на всасывающий коллектор дизеля. Затем к ним добавлялся газообразный кислород. Избыток выхлопных газов отсасывался компрессором и сжимался, при этом углекислый газ, составлявший около 75 % объема избыточных газов, превращался в жидкую углекислоту, которая сливалась в специальные баллоны и периодически удалялась за борт. Газообразный остаток, в основном кислород, снова возвращался в цикл. Осенью 1938 г. подлодка С-92 вышла на испытания, которые продолжались более двух лет. К началу Великой Отечественной войны они еще не закончились, и подводную лодку законсервировали. В связи с тем, что к окончанию войны и в первые послевоенные годы были разработаны и проверены в действии более простые циклы единых двигателей, к испытаниям "РЕДО" не возвращались. После войны подводная лодка использовалась для отработки других типов единых двигателей.

В 1938-1939 гг. ОКБ НКВД разработало проект подводной лодки с опытной единой энергетической установкой "ЕД-ХПИ" (единый двигатель с химическим поглотителем). Принцип работы установки заключался в следующем. Выхлопные газы из дизеля поступали в газоохладитель, где они охлаждались и освобождались от водяных паров и частично от механических примесей. Далее они направлялись в специальные химические фильтры, где отделялся углекислый газ и окись углерода. Затем производилось дальнейшее освобождение выхлопных газов от избыточной влаги, они обогащались газифицированным кислородом, и в дизельный отсек поступала газовая смесь, близкая по своему составу к обычному воздуху.

Подводную лодку проекта 95 с "ЕД-ХПИ" спустили на воду в Ленинграде 1 июня 1941 г. С началом войны ее отбуксировали в Горький, а затем в Баку. Ходовые испытания закончили после войны, а в состав ВМФ корабль приняли только в 1946 г. Однако все мытарства окупились сторицей. В первой половине 1950-х гг. в состав отечественного флота вошло 30 подводных лодок проекта А615 с единым двигателем, созданным с учетом опыта эксплуатации лодки проекта 95. Советский Союз стал единственной военно-морской державой, серийно строившей корабли с подобной силовой установкой.

Второй страной, где велись интенсивные работы по созданию подводных лодок с единым двигателем внутреннего сгорания, являлась Германия. У немцев такой двигатель назывался "крейслауф" - круговорот. Создать работоспособный дизель, работающий по замкнутому циклу, немцы смогли в годы Второй мировой войны. В 1943 г. командование германских ВМС приняло решение построить экспериментальную подлодку XVII серии с дизелем "крейслауф" мощностью 1500 л. с. В 1944 г. ее заложили под обозначением U-798, но до окончания войны не успели спустить на воду.

В 1930-х годах предпринималась еще одна попытка создать двигатель, работающий по замкнутому циклу, но с применением в качестве окислителя не кислорода, а перекиси водорода. Автором идеи был германский инженер Гельмут Вальтер.
Вальтер пришел к выводу, что наиболее эффективно свойства концентрированной перекиси водорода можно использовать не в дизельной, а в турбинной установке. В 1936 г. такую экспериментальную парогазовую турбинную энергетическую установку построили в Киле. Она работала по так называемому "холодному" циклу. Продукты реакции разложения высококонцентрированного раствора перекиси водорода подавались в турбину, вращавшую через понижающий редуктор гребной винт, а затем отводились за борт.

Первая энергетическая установка имела два очевидных недостатка. Кислород, содержащийся в отводимых за борт продуктах реакции, плохо растворяется в воде, а его пузырьки демаскируют подводную лодку. Кроме того, в условиях корабля, изолированного от атмосферы толщей воды, выбрасывать за борт кислород было неоправданным расточительством. Поэтому логическим продолжением "холодного" процесса являлся "горячий", при котором в продукты разложения перекиси подавалось органическое топливо, которое затем сжигалось. В таком варианте мощность установки резко возрастала и, кроме того, уменьшалась следность, так как продукт горения - углекислый газ - значительно лучше кислорода растворяется в воде. И все же на первом этапе работ Вальтер ограничился установкой с "холодным" циклом, поскольку она была проще и безопаснее.
В 1937 г. Вальтер доложил результаты своих опытов руководству германских ВМС и заверил всех в возможности создания подводных лодок с парогазовыми турбинными установками с невиданной скоростью подводного хода - более 20 узлов.

Командование кригсмарине приняло решение о форсировании создания лодки. В процессе ее проектирования решались вопросы, связанные не только с применением необычной энергетической установки. Для получения проектной скорости подводного хода порядка 25 узлов обводы корпуса обычной подводной лодки и способы управления ею в подводном положении стали неприемлемы. Пришлось прибегнуть к опыту авиастроителей. Выбирая оптимальную форму и размеры корпуса лодки, испытали несколько моделей в аэродинамической трубе. В 1938 г. в Киле заложили первую в мире опытную подводную лодку с энергетической установкой на перекиси водорода водоизмещением 80 т, получившую обозначение V-80. Проведенные в 1940 г. испытания буквально ошеломили - подлодка развила под водой скорость 28,1 узла.

Несмотря на великолепные результаты испытаний, дальнейшие работы застопорились - шла Вторая мировая война, и германское командование сделало ставку на уже отработанные образцы вооружения. Только в 1941 г. началась разработка, а затем постройка подводной лодки V-300 с парогазовой турбиной, работавшей по так называемому "горячему" циклу.

U-791 так и не достроили, зато заложили четыре опытно-боевые подводные лодки двух серий - Wa-201 (Wa - Вальтер) и Wk-202 (Wk - Вальтер-Крупп). По своим энергетическим установкам они были идентичны, но отличались конструкцией корпуса. С 1943 г. начались их испытания. В частности, лодка U-792 (серия Wa-201), имея запас перекиси водорода 40 т, почти четыре с половиной часа шла под форсажной турбиной и четыре часа поддерживала подводную скорость 19,5 узла. Не дожидаясь окончания испытаний опытных подлодок, в январе 1943 г. германской промышленности был выдан заказ на постройку еще 12 кораблей с аналогичными энергетическими установками. До окончания войны немцы успели спустить на воду только пять единиц, три из которых прошли испытания. Ни одна из лодок с двигателями Вальтера в боевых действиях не участвовала. Перед капитуляцией все они были затоплены экипажами. Но, воспользовавшись тем, что это произошло на мелководье, две лодки подняли. Затем U-1406 отправилась в США, a U-1407 - в Великобританию. Там специалисты тщательно изучили немецкие новинки, а британцы даже провели натурные испытания U-1407. В 1956 г. англичане ввели в строй свои опытовые подлодки "Эксплорер" и "Экскалибур" с двигателями Вальтера. Однако время ушло: американцы уже вовсю внедряли ядерные энергетические установки, по этому же пути решили идти и британцы.

После окончания Второй мировой войны до начала 1950-х годов все ведущие военно-морские державы занимались изучением германского наследия. Именно поэтому все первые послевоенные проекты подводных лодок в какой-то мере являлись национальными аналогами последних германских разработок. Советский Союз строил подлодки с единым двигателем, но на базе собственных предвоенных разработок. В 1960-е годы об идее неядерного единого двигателя для подлодок опять вспомнили. Речь идет о превращении химической энергии непосредственно в электрическую без процесса горения или механического движения, то есть выработке электроэнергии бесшумным способом.

Электрохимический генератор создан на базе топливных элементов. По сути, это аккумуляторная батарея с постоянной подзарядкой. Принцип работы энергетической установки с электрохимическим генератором был тем же, что и 150 лет назад, когда англичанин Уильям Роберт Гров случайно обнаружил при электролизе, что две платиновые полоски, обдуваемые - одна кислородом, а другая - водородом, помещенные в водный раствор серной кислоты, дают ток. В результате реакции, кроме электрического тока, образовывались тепло и вода. При этом энергетическое превращение происходит бесшумно, а единственным побочным продуктом реакции является дистиллированная вода, которой достаточно легко найти применение на подводной лодке. Идея применения электрохимических генераторов для подводного хода сулила немалые преимущества, в первую очередь, давала существенное увеличение непрерывной дальности подводного плавания экономическим ходом по сравнению с дизель-электрическими подводными лодками. В известной степени интерес к электрохимическим генераторам "подогревался" тем обстоятельствам, что в США в 1960-е годы бортовые системы пилотируемых космических кораблей "Джемини" (орбитальные полеты) и "Аполлон" (высадка на Луну) получали питание от топливных элементов.

В Советском Союзе в 1989 г. закончились межведомственные испытания подводной лодки проекта 613Э с опытной энергетической установкой с электрохимическим генератором (разработчики - НПО "Квант" минэлектротехпрома и НПО "Криогенмаш" минхиммаша). Переоборудование вместе с ремонтом корабля продолжалось более 10 лет.

Сама установка электрохимического генератора мощностью 280 кВт кроме топливных элементов включала в себя системы управления, обеспечения рабочими компонентами и др.

Новые условия эксплуатации лодки потребовали дооборудовать место ее базирования.

В течение шести месяцев специальная комиссия провела расширенные межведомственные испытания энергетической установки с электрохимическим генератором (ЭХГ). Впервые в практике отечественного кораблестроения был испытан в корабельных условиях и показал соответствующие проекту характеристики генератор "ЭХГ-280". Был сделан вывод о том, что ЭХГ как неатомный экологически чистый малошумный источник электроэнергии с прямым преобразованием химической энергии в электрическую является перспективным для применения в подводном судостроении. Он обладает рядом преимуществ перед традиционными источниками электроэнергии, в частности, позволяет в 5...10 раз увеличить дальность непрерывного подводного плавания экономическим ходом.

В то же время, несмотря на очевидные преимущества установки на топливных элементах, она не обеспечивает требуемые оперативно-тактические характеристики подводной лодки океанского класса, прежде всего в части, касающейся выполнения скоростных маневров при преследовании цели или уклонении от атаки противника. Поэтому германские подводные лодки проекта 212 оснащаются комбинированной двигательной установкой, в которой для движения на высоких скоростях под водой используются аккумуляторные батареи или топливные элементы, а для плавания в надводном положении - традиционный дизель-генератор, в состав которого входит 16-цилиндровый V-образный дизель и синхронный генератор переменного тока.

На разработке двигателей Стирлинга, или двигателей с внешним подводом теплоты, сосредоточили свои усилия шведские специалисты (об истории двигателя Стирлинга см. "Двигатель" № 2 и 3 - 2005). Конструкция предусматривает наличие единой камеры сгорания для всех цилиндров, использование поршней двойного действия, выполняющих функции рабочего поршня и вытеснителя. На шведских подлодках типа "Готланд" два двигателя Стирлинга мощностью чуть более 100 л. с. обеспечили увеличение продолжительности пребывания под водой в 7 раз (до 14 суток).


Предыдущий материал К содержанию номераСледующий материал