Разработка

ЕГО ВЕЛИЧЕСТВО – К. П. Д.

2. ПОТЕРИ ТЕПЛОВОЙ ЭНЕРГИИ ГАЗОВ
Теперь рассмотрим потери второго вида энергии, используемой в двигателе - тепловой энергии газов.
Начнем с потерь, вызванных окислением и горением топлива в фазе СЖАТИЕ
Как уже упоминалось, модель идеального двигателя может быть представлена в виде поршня с пружиной. В фазе СЖАТИЕ (это фаза потерь) поршень принудительно сжимает относительно слабую пружину. Ее сила противодействия определяется механическим сжатием газа, т.е. растет пропорционально текущей степени сжатия.
При достижении поршнем ВМТ начинается фаза РАСШИРЕНИЕ.
Но, во-первых, "поведение" воздушно-топливной смеси при сжатии отличается от “поведения” инертного газа. При сжатии воздушно-топливной смеси по сравнению с чистым воздухом давление и температура заметно повышаются. Это объясняется тем, что при нагреве воздушно-топливной смеси до нескольких сотен градусов начинается "холодная" (без горения) реакция окисления топлива, которая сопровождается выделением тепловой энергии. Таким образом, топливо в фазе СЖАТИЕ теряет свою калорийность. Этому способствует наличие в двигателе раскаленных поверхностей (свеча зажигания, выпускной клапан). Счастье, что эти потери не превышают нескольких процентов.
Во-вторых, горение воздушно-топливной смеси не происходит мгновенно (опять же к счастью), а требует значительного времени. Финиш горения достаточно строго задан - это примерно 15° после ВМТ. Поэтому старт горения (зажигание) определяется частотой вращения коленвала двигателя. Чем выше частота вращения коленвала, тем больше угол опережения зажигания. Это означает, что тепловая энергия газов все больше выделяется в фазе СЖАТИЕ и все сильнее убывает в фазе РАСШИРЕНИЕ. То есть сила пружины, которая противодействует поршню, становится все больше, а сила пружины, которая совершает полезную работу, становится все меньше. Таким образом, потери нарастают с двойной скоростью. Наступает момент, когда двигатель "визжит" на высоких оборотах, а крутящего момента нет. Тепловая энергия газов никуда не исчезла, ее вдоволь, но она выделилась слишком рано. "Дорога ложка к обеду". Первопричиной этих огромных потерь является неоправданно долгое горение воздушно-топливной смеси, а понятие "потери" носит условный характер.
Потери из-за декомпрессии физически абсолютно прозрачны. Как народная мудрость не рекомендует воду в решете носить, так не рекомендуется эксплуатировать двигатель с низкой компрессией. Декомпрессия может иметь несколько причин: износ поршневой группы, особенно колец; плохое прилегание клапанов к гнездам; дефекты свечи зажигания, резьбового соединения и др.
В результате из-за неплотностей в камере сгорания и цилиндре происходит стравливание газа высокого давления, т. е. возникают прямые потери тепловой энергии вместе с самим газом. Кроме этого, могут быть и другие негативные последствия, например, экологические.
Однако в отличие от потерь тепловой энергии потери из-за декомпрессии растут с уменьшением частоты вращения коленвала двигателя. Это объясняется прямой зависимостью потерь от времени воздействия разности давлений (закон Ома в пневматехнике).
Природа потерь в стенки камеры сгорания и цилиндра также очевидна. Горение происходит циклично, максимальная температура достигает 2500 °С, а температура стенок двигателя примерно 95 °С. Чем больше разность температур, тем больше потери тепла (закон Ома в теплотехнике). Поэтому самые большие потери там, где самая высокая температура. В соответствии с Махе-эффектом это область начала горения, где располагаются свеча зажигания и начальная часть спиральной траектории горения.
Следует отметить, что расчет тепловых потерь в стенки двигателя весьма затруднен. Объясняется это сложной формой и динамичностью объемного градиента температур, влиянием эффекта "газовой рубашки" (см. "Двигатель" № 4 - 2003), турбулентностью, различной температурой внутренней поверхности стенок камеры сгорания, различной теплопроводностью отдельных фрагментов камеры сгорания и т.д.
Используя эмпирические данные, можно оценить потери тепловой энергии газов в стенки двигателя значением порядка 20 %.
Наконец, мы подошли к самым известным и, по мнению специалистов, самым большим потерям тепловой энергии в выхлопную трубу. Минимальная величина потерь соответствует холостому ходу. Максимальные потери характерны для режима максимальной нагрузки и частоты вращения вала.
В случае с газовым топливом потери еще больше, так как выше температура выхлопных газов. Напомним, что паровоз работал при температуре пара 150 °С.
Чем объясняется высокая температура выхлопных газов в двигателях, работающих на легком топливе? Дело в том, что в камере сгорания топливо сгорает не полностью, а только на 70…80 %. Далее, когда поршень движется вниз, продолжается его догорание. Это позволяет двигателю поддерживать высокое давление в цилиндре, а следовательно, и температуру выхлопных газов. С повышением частоты вращения вала время на догорание сокращается, а температура выхлопных газов повышается. Наступает момент, когда топливо догорает уже в выхлопной трубе. Например, на спортивных машинах выхлопные трубы, находящиеся непосредственно у двигателя, раскаляются докрасна ("полный гудок").
С газовым топливом проблем еще больше. Октановое число газа выше, чем у бензина, поэтому загорается оно хуже, горит медленнее, догорает позднее.

(Продолжение следует)