ОПТИМИЗАЦИЯ ФОРМЫ Лопатки газовой турбины методами математического моделирования

ФГУП "ЦИАМ им. П.И. Баранова":

Франческа Александровна Слободкина, д.ф.-м.н., профессор Виталий Владимирович Малинин, к.ф.-м.н. Алексей Владимирович Малинин, инженер-конструктор

Методами математического моделирования исследуется обтекание решетки профилей газовой турбины, определяются области отрыва пограничного слоя на поверхности профиля, проводится модификация формы профиля с целью уменьшения области отрыва, уменьшения потерь и интенсивности вихреобразования.

Mathematical modeling of fluid flow in 2D cascade of a gas turbine is investigated. Boundary layer separation zones are determined. In order to improve cascade performance characteristics (i.e. decrease of losses and vortex formation intensity) a profile geometry optimization is performed.

Ключевые слова: решетка профилей, невязкое и вязкое газодинамическое течение, отрыв пограничного слоя, вихреобразование Keywords: cascade, inviscid and viscous gas flow, boundary layer separation, eddy generation.

Объектом исследования является решетка профилей лопаточной машины - газовой турбины - в потоке вязкой сжимаемой жидкости.

Известно, что в реальных ситуациях основные потери происходят в области пограничного слоя с неблагоприятным градиентом давления, вызывающим возникновение зоны отрыва потока от стенки и интенсивное вихреобразование. Такие особенности обтекания решетки профилей газовой турбины характерны как для полностью дозвукового обтекания, так и при появлении сверхзвуковой области на спинке профиля с замыкающим скачком уплотнения.

Цель исследования состоит в улучшении качества объекта путем изменения геометрии, направленного на уменьшение зоны отрыва, что приведет к уменьшению потерь и, следовательно, повышению коэффициента эффективности устройства.

В работе представлена реализация двух математических методов, результаты которых сравниваются между собой и с экспериментальными данными:

 Метод численного расчета обтекания решетки профилей на основе уравнений газовой динамики для идеального газа с последующим вычислением характеристик пограничного слоя и опреде-

лением зоны отрыва потока на основе критериев подобия.

2. Метод численного расчета обтекания решетки профилей на основе уравнений Навье-Стокса для вязких турбулентных течений.

Использование двух математических методов, применяемых последовательно, объясняется тем, что получение решения для невязких течений по методу 1 требует значительно меньшего времени, чем нахождение решений по методу 2. В связи с этим многовариантный расчет по выбору оптимального профиля проводится методом 1 и затем проверяется и уточняется по методу 2.

В статье демонстрируются возможности моделирования дозвуковых режимов течения в решетке профилей с образованием замкнутой зоны с отрывом потока. Деформацией профиля удалось в несколько раз сократить область отрыва и снизить потери. Сравнение численных решений с соответствующими экспериментальными результатами подтверждает возможность использования выбранных математических моделей для решения поставленной задачи.

Постановка задачи

В качестве исследуемой решетки профилей рассмотрим плоскую турбинную решетку, для которой имеются экспериментальные газодинамические характеристики. Схема турбинной решетки представлена на рис.1. Характеристики решетки приведены в безразмерном виде: все линейные размеры отнесены к хорде профиля; толщина выходной кромки d_2 отнесена к размеру выходного сечения межлопаточных каналов a_2 . Геометрические параметры решетки определены аналитически с учетом ее шага t и угла установки γ .

Исходные данные:

1. Задана геометрия профиля лопатки;

2. На входе заданы полное давление и полная температура, равные атмосферным условиям $P_{\rm BX}^*=10^5\,\Pi$ а и $T_{\rm BX}^*=293$ K;

3. На выходе задано статическое давление, выбранное таким образом, чтобы обеспечивать на выходе требуемое экспериментом значение параметра λ_2 по формуле:

 $P_{\scriptscriptstyle \rm BbX} = P_{\scriptscriptstyle \rm BX}^* \cdot \pi(\lambda)$, где $P_{\scriptscriptstyle \rm BbX}$ - статическое давление на выходе из решетки, $\pi(\lambda)$ - газодинамическая функция:

$$\pi(\lambda) = (1 - \frac{k-1}{k+1}\lambda^2);$$

k - показатель адиабаты;

 Рабочим телом является воздух, рассматриваемый как невязкий сжимаемый газ;

 Граничные условия на поверхности лопатки - равенство нулю нормальной составляющей скорости потока (условие непротекания) и адиабатическая стенка;

6. Угол входа потока равен 54° от вертикали (ось Y) т.е. поток направлен под углом 36° к продольной оси X.

№ 5 (77) 2011 ABUГатель www.dvigately.ru

Рис. 2. Изменение величины λ относительной вдоль координаты S исходного профиля. Под λ отн. понимается величина λ вычисленная в эксперименте по измерениям давления на профиле Приведем результаты экспериментальных исследований газодинамических параметров данной решетки.

Распределение коэффициента скорости по лопатке решетки представлено на рис. 2. Величина *S* - относительная криволинейная координата вдоль обводов профиля, *S* - отсчитывается от точки на окружности *d*₂ - по спинке и далее по Величина коэффициента

корыту до нижней точки на окружности *d*₂. Величина коэффициента скорости λ₂ = 0,58 на выходе из решетки. Из анализа рис. 2 следует, что при обтекании выбранной решетки имеются области больших градиентов скорости и, соответственно, давлений, приводящих к отрыву пограничного слоя от стенки (на спинке лопатки).

Оптимизация профиля решетки

Оптимизация профиля решетки состоит в таком его изменении, которое позволит сдвинуть область отрыва к концу профиля или существенно ее уменьшить.

Расчеты обтекания решетки первоначально проводятся на основе уравнений газовой динамики с последующим определением точек отрыва с привлечением уравнений пограничного слоя Прандтля и критериев отрыва потока [1,2].

После получения результатов для выбранной решетки профилей (прототипа) проводится деформация профиля с целью уменьшения области отрыва и расчет повторяется. Таким образом, строится цикл программы расчета, который заканчивается по достижении поставленной цели проверкой результатов на основе модели вязкого турбулентного течения.

Коэффициент потерь можно представить в виде суммы потерь на трение на профиле решетки и потерь, связанных с отрывом потока на спинке лопаток $\zeta_{\tau p} + \zeta_{o \tau p}$.

Последние потери являются наиболее существенными, потому их минимизация даст значительный выигрыш в эффективности.

На рис. 3, 4 демонстрируются результаты расчета, проведенного по изложенным выше методам. В областях торможения потока возникают зоны отрыва, размеры которых определяются величиной градиентов λ или, что то же, давления.

Форма улучшенного профиля дана на рис. 3.

При деформации профиля соблюдались основные правила, следующие из построения решетки профилей турбины выбранной конструкции: неизменность базовых параметров, указанных на рис. 1 и 3.

Сохранность базовых параметров является существенным ограничением при оптимизации решетки профилей, в отличие от оптимизации одиночного профиля, где такие ограничения не выставляются [3, 4].

Необходимо отметить, что ни одна практически значимая задача оптимизации не решается без ограничений.

На рис. 4 представлено сравнение результатов расчета распределения коэффициента скорости λ вдоль координаты S для исходной и оптимизированной решетки профилей. Эти результаты наглядно демонстрируют выигрыш при модификации профиля в распределении λ, а, следовательно, давления и других параметров.

Проведем анализ графиков, представленных на рис. 4.

1. На диффузорном участке межлопаточного канала исходной решетки разгон газа, представляемый отношением λ_{max}/λ_2 , равен 33 8 % против 20 3 % для оптимизированного профиля.

2. В случае исходного профиля присутствует резко выраженное диффузорное течение после горла (отмечено красной точкой); в случае оптимизированного профиля такое течение имеет значительно более гладкий характер. 3. Интенсивность отрыва на передней кромке, которая определяется отношением $\lambda_{max} / \lambda_{min}$ (при S = 0.5), составляет 0,07 для исходного профиля против 0,035 для оптимизированного, то есть интенсивность отрыва после оптимизации уменьшается вдвое.

 Дисбаланс (разница скоростей схода струй со спинки и корыта) равен 0,098 для исходного профиля против 0,152 для оптимизированного (при норме 0...0,075);

5. Качественная характеристика - гладкость - у оптимизированного профиля также выше. Гладкость определяется частотой смены знака второй производной.

В заключение отметим, что, несмотря на несколько возросший дисбаланс скоростей при сходе струй в конце профиля, приближение остальных показателей к норме позволяет утверждать, что оптимизированный профиль лучше исходного.

Проверка результатов оптимизации расчетами уравнений Навье-Стокса

Приведем результаты расчета обтекания исходной решетки и решетки с оптимизированными профилями на основе уравнений, описывающих вязкое турбулентное течение сжимаемого газа. Математическая модель вязкого турбулентного течения построена на уравнениях Навье-Стокса, осредненных по Рейнольдсу, дополненных двухпараметрической моделью турбулентности [5, 6].

На рис. 5, 7 демонстрируются результаты проведенного численного исследования.

На рис. 5 показана интенсивность зон отрыва пограничного слоя для исходного и оптимизированного профиля на примере распределения числа Маха.

На рис. 5 хорошо видно существенное снижение интенсивности и протяженности отрыва в случае оптимизированного профиля.

На исходном профиле длина зоны отрыва l_2 - l_1 составляет 0,0237.

В случае оптимизированного профиля протяженность области отрыва равна 0,0089, то есть зона отрыва меньше в 2,66 раза.

Здесь L- относительное расстояние вдоль профиля от точки натекания (лобовой точки) к длине профиля от лобовой точки до задней кромки. L_1 - точка отрыва потока, L_2 - точка присоединения.

Отметим также, что интенсивность самого отрыва существенно снижена - максимальное значение числа Маха для исходного профиля равно 0,8888 против 0,8083 для оптимизированного. Приведенные отличия показывают, что общий уровень потерь в каскаде снижается при использовании оптимизированного профиля.

На рис. 6 приведены результаты расчета падения полного давления в межлопаточном канале по мере удаления от передней

кромки для исходной решетки и оптимизированной.

Величина давления посчитана по среднемассовому расходу в каждом сечении. Из данных, представленных на рис. 6, следует, что потери в решетке при использовании оптимизированного профиля уменьшаются на 6,25 % по сравнению с исходным. Этот результат свидетельствует о том, что в каскаде выигрыш будет значительно больше.

В заключение приведем сравнение результатов расчета с экспериментальными данными для трех режимов обтекания, различных по величине λ_2 (рис. 7).

Сплошной линией приведены результаты расчета, прерывистой линией со стрелочками - результаты эксперимента. Видно, что при $\lambda_2 = 0.93$ на профиле образуется обширная сверхзвуковая зона.

Как следует из результатов, приведенных на рис. 7, численный расчет с высокой точностью воспроизводит экспериментальные данные, что является наглядным подтверждением адекватности математической модели, принятой для детального описания течения, исследуемым физическим процессам.

Литература

1. Годунов С.К., Забродин А.В., Прокопов Г.П. Разностная схема для двумерных нестационарных задач газовой динамики и расчет обтекания с отошедшей ударной волной. ЖВМ и МФ, 1961, 1, № 6, 1020-1050.

2. Бам-Зеликович Г.М. Расчет отрыва пограничного слоя. Изв. АН СССР, ОТН, 1954. - 85с.

3. Слободкина Ф.А., Малинин В.В., Петров А.Г. Численное исследование возможности построения оптимальной формы лопатки.//Х международная школа-семинар "Модели и методы аэродинамики", Крым, г. Евпатория, 3-12 июня 2010 г., Материалы конференции, стр. 157-158.

4. Слободкина Ф.А., В.В. Малинин. Оптимизация эффективности работы лопаточных машин путем создания формы лопатки минимального сопротивления. // Российская техническая нефтегазовая конференция и выставка SPE по разведке и добыче 2010, Москва, 26-28 октября 2010 г., Материалы конференции, SPE-135795.

5. Launder B.E. and Spalding D.B. B. The Numerical Computation of Turbulent Flows // Comp. Meth. Appl. Mech. Eng. - 1974. - V.3. - P. 269-289.

6. Слободкина Ф.А., Малинин В.В., Шигапова Д.Ю. Течение жидкости в ступени центробежного насоса. // "Математическое моделирование", 2008, т.20, №10, с.51-62.

Связь с авторами: faslobod@gmail.com

гис. 7. Сровнение расчета (сплошнае линии) с данными эксперимента (шприховые линии) для распределения параметра λ вдоль профиля при трех вариантах значений козффициента скорости на выходе из решетки λ₂ = 0,58, λ₂ = 0,68, λ₂ = 0,93

№ 5 (77) 2011 www.dvigately.ru

<u> Авигатель</u>